
Accessible Software
Development

05-499/899 Fall 2024

Celebrating Accessibility

https://cmu-05-499.github.io

Andrew Begel and Patrick Carrington

https://cmu-05-499.github.io/

Administrivia

• The election is over. The world will go on.

• P4 – Project Milestone 1 due next week, Thursday November
14 11:59pm.

• Talk to your TAs and let them know how things are going.

• If you are blocked on progress for any reason, reach out to
your TAs and they will brainstorm with you how to work
around it.

Accessible Software Engineering

Two meanings:

1. Supporting software development by people with
disabilities

2. Developing software to be used by people with disabilities

Accessible Software Engineering

Two meanings:

1. Supporting software development by people with
disabilities

2. Developing software to be used by people with disabilities

Deep Dive

• Programming by Voice

• Mixed Ability Collaboration in Programming

• Both by Andrew Begel (and his collaborators)!

6

Programming by Voice - Motivation

• Programmers conventionally use keyboard

– Long hours at keyboard leads to higher risk of RSI

• Can speech-based programming be an alternative?

• Combines an unambiguous domain

(programming) with an inherently ambiguous

input modality (speech)

– Great for exploring ambiguity handling in a new

context

while (counter < limit) {

}

7

Programming by Voice

• My Goal
– Find out how developers use code verbally. Use this to

develop a naturally verbalizable input form.

– Build development environment that supports verbal
authoring, navigation, modification.

• Extend conventional compiler analyses to support ambiguities
generated by speech.

– Learn how developers can use voice-based programming,
and iterate design.

while counter is less

than limit do ...

8

Challenges

Programming languages were not designed to be

spoken.

Speech is inherently ambiguous. Programming tools

were not designed for ambiguity.

Speech tools are poorly suited for programming

tasks.

Programmers are not used to verbal software

development.

9

Talk Outline

• Introduction and Motivation

➢ Programming by Voice

• Program Analyses for Ambiguous Inputs

• Program Navigation and Editing

• Conclusion

10

Programming by Voice

for (int i = 0; i < 10; i++) {

 ▌

}

11

Current Tools are Awkward!

for (▌ ; ;) {

}

VoiceCode
[Desilets 2004]

1

2

3

4

for loop … after left paren … declare india

of type integer … assign zero … after semi

… recall one … less than ten … after semi

… recall one … increment … after left
brace

12

for (int i = 0;▌ ;) {

}

1

2

3

4

i

Current Tools are Awkward!

1

2

3

4

i

VoiceCode
[Desilets 2004]

for loop … after left paren … declare india

of type integer … assign zero … after semi

… recall one … less than ten … after semi

… recall one … increment … after left

brace

13

for (int i = 0; i < 10;▌) {

}

Current Tools are Awkward!

1

2

3

4

i1

2

3

4

i

VoiceCode
[Desilets 2004]

for loop … after left paren … declare india

of type integer … assign zero … after semi

… recall one … less than ten … after semi

… recall one … increment … after left

brace

14

for (int i = 0; i < 10; i++) {

 ▌

}

1

2

3

4

i

Current Tools are Awkward!

1

2

3

4

i1

2

3

4

i

VoiceCode
[Desilets 2004]

for loop … after left paren … declare india

of type integer … assign zero … after semi

… recall one … less than ten … after semi

… recall one … increment … after left

brace

15

Programming by Voice Related Work

Human-CentricComputer-Centric

Multiple

Tasks

Authoring

Only

Arnold ‘00

Snell ‘00

Price ‘00 ‘02

Desilets ‘01 ‘04

Gray ‘03

Begel ‘05

16

How do Programmers Speak Code?

• 10 programmers read Java code out loud

• Most programmers spoke the same way

• But, there were some interesting

differences...

17

Awkwardness by Design (Structural)

(int)foo

(3 + 5) * 7

How do Programmers Speak Code?

18

How do Programmers Speak Code?

 Individual Inconsistency

 System.out.println vs.

 System out println

 bar sub i vs.
 bar of i vs.
 i from bar

19

How do Programmers Speak Code?

Native English speakers vs.
non-native speakers (Pronunciation)

tur vs. t u r

println

array[i++] vs. array[i]++

20

A More Natural Way to Code

for int i equals zero i less than ten i plus plus

for (int i = 0; i < 10; i++) {

 ▌

}

21

Too Many Ambiguities

for (int i = 0; i < 10; i++) {

 ▌

}

4 int eye equals 0 aye less then ten i plus plus

KW or #?

Spelling of ID?
KW or ID?

for int i equals zero i less than ten i plus plus

22

Sometimes It’s Non-Obvious

for (times = 8; file(2, load); times == one) {

 ▌

}

for times equals 8 file 2 load times equals one

fore *= 8; file.tooLode.times = won ▌

4; times = ate(file).to(load).equals(1) ▌

23

Design Tradeoffs

Command

Language

Easy to analyze,

but prescriptive

Natural

Language

Flexible,

but ambiguous

Programming

by Voice

24

Spoken Java

• Semantically identical to Java

• Syntactically easier to say than Java

– Methodology generalizable to any computer language

1. All punctuation has English equivalents

• Open Brace, End For Loop

2. Most punctuation is optional

3. Provide verbalization for all abbreviations

4. Relaxed phrasing for better fit with English
• (int)foo “cast foo to integer”

• foo = 6 “set foo to 6”

• foo[i]++ “increment the ith element of array foo”

25

SPEED: Speech Editor

• Build an editor that supports naturally
verbalized programs

• SPEED: SPEech EDitor

• Based on IBM ViaVoice, Eclipse IDE

– Spoken Java Language for Composition

– Spoken Command language for Navigation,
Editing, Template instantiation, Refactorings,
Search

– Audible and visual feedback

• Similar to JavaSpeak [Smith 2000]

42

Study – SPEech EDitor Usability

Goal: Understand how SPEED can be used
 by expert programmers

Hypothesis: SPEED is learnable and usable for
standard programming tasks

1. Train 5 expert Java programmers on SPEED (20 minutes)

2. Create and modify code (30 minutes)

– Build a Linked List data structure with associated algorithms

• 3 programmers used commercial speech recognizer

2 programmers used human speech recognizer

43

Watch it in Action!

• https://andrewbegel.com/papers/dissertation-

highlights.wmv

https://andrewbegel.com/papers/dissertation-highlights.wmv
https://andrewbegel.com/papers/dissertation-highlights.wmv

44

Metrics

• Number of Commands/Dictations Uttered

vs. Recognized

• Number of Correctly Interpreted

Recognition Events

• Features Used

– Code Templates, Dictation, Navigation,

Editing, Fixing Mistakes

• Quantity and Kinds of Mistakes

– Speech Recognition, SPEED, User

45

Outcomes for each utterance

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P1 P2 P3 P4 P5

U
tt

e
ra

n
c
e
s

Correctly Recognized

by VR

Incorrectly Recognized

by VR

Participant spoke

ungrammatically

Participant said the

wrong thing

Participant did not

know what to say

46

Correct Commands and Dictation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P1 P2 P3 P4 P5

Participants

P
e
r
c
e
n

ta
g

e
 o

f
T
o
ta

l

Editing Navigation

Inserting Code Templates Starting Dictation

Fix Errors Other

47

Summary of Results

• Commands were easy to learn and remember.

– Very few user mistakes

• Most commands spoken for editing.

– GOMS analysis predicts speech will be slower
unless you can get a lot of text for each utterance.

– Code templates provide “most bang for your buck”.

• Speakers were apprehensive about speaking
code instead of describing it via code templates.

Paper Discussion

• Blocks4All Programming Environment

• Interviews and Observation of Blind Software Developers at
Work to Understand Code Navigation Challenges

• Vocal Programming for People with Upper-Body Motor
Impairments

• Spoken Programs

Meet Michael

Michael is blind.

He uses a screen reader to
interact with his laptop.

He is a software developer
who works on a team with 5
sighted developers.

49

50

In person collaboration

• Before COVID-19, Michael collaborated with others in
person at the office.

• To walk through code together, Michael used his screen
reader while his colleagues looked over his shoulder at
the screen.

51

Synchronous, remote collaboration tools are inaccessible

• After COVID, everyone worked from home and used Zoom
to share their screens and talk about the code out loud.

• Michael wanted to continue reading the code together
with his team, but none of the remote collaboration tools
were accessible.

• Shared screens are completely inaccessible.

• Co-editing IDEs only show everyone’s cursors and edit
actions visually.

• Michael had to constantly remind his colleagues to say
code locations out loud in order to stay in sync.

• Sometimes, he just gave up and handed control of his
computer to a remote colleague.

How do accessibility limitations
impact developers with visual

impairments in the workplace?

52

Agenda

1. Study of collaboration barriers experiences by 12 blind

or visually impaired software developers

2. CodeWalk: an IDE with mixed ability collaboration

support through sound effects and speech

53

In collaboration with Venkatesh Potluri (U. Washington), Maulishree Pandey (U. Michigan),
Michael Barnett (Microsoft), and Scott Reitherman (Microsoft)

Study Details

• Semi-structured interviews with 12 blind and visual impaired software
developers from USA and India

• Aged 20-57 (avg. 32, median 26)

• 10 male, 2 female

• 6 blind, 3 visually impaired, 2 low vision, 1 legally blind

• 8 employed in software, 4 students

• 10 used screen readers, 2 used screen magnifiers

• All worked with sighted colleagues

55

Collaborative Coding Activities

• Writing (co-editing)

• Debugging

• Code walkthroughs

• Code reviews

• Giving someone advice about the code

• Searching for examples

• Hackathons

• JAWS
• NVDA
• Voiceover
• Narrator
• Talkback

Coding Tools

Screen Readers IDEs

• Visual Studio
• VS Code
• Notepad
• Notepad++
• CLI
• Eclipse

56

Everyone used multiple IDEs and screen readers

57

Tool Barriers

• Installation and setup processes could be inaccessible, even if the tool
was itself accessible.

• IDEs and tools are incompletely compatible with screen readers.

• Software redesigns often break useful accessibility features.

• The team’s engineering practices restrict choice for disabled
developers.

Pandey, Maulishree, et al. "Understanding Accessibility and Collaboration in
Programming for People with Visual Impairments." Proceedings of the ACM on
Human-Computer Interaction 5.CSCW1 (2021): 1-30.

58

Asymmetric Collaboration Barriers

• Code sharing via screen sharing is inaccessible.

• Sighted colleagues forget to explain where they are in the code base,
preventing blind developers from following along.

• It is hard to follow spoken details about code that blind developers
have not yet read through themselves.

• When blind developers get lost, they are hesitant to ask questions.

• Sighted colleagues get frustrated and take over the blind developer’s
computer.

CodeWalk: Shared Awareness
in Mixed Ability Collaborative

Software Development

59

In collaboration with Venaktesh Potluri (U Washington), Maulishree Pandey (U
Michigan), Michael Barnett (Microsoft), Scott Reitherman (Microsoft)

Co-editing support in IDEs

• Several IDEs now allow programmers to coedit and co-debug
code from their respective IDEs

• They also offer "Follow" or "Observer" modes that allow
collaborators to sync viewports

61

Co-editing support in IDEs

• Several IDEs now allow programmers to coedit and co-debug
code from their respective IDEs

• They also offer "Follow" or "Observer" modes that allow
collaborators to sync viewports

• The visual nature of these awareness cues makes them
inaccessible to blind and visually impaired developers

63

Design Goals

• Convey collaborator awareness cues (e.g. cursor location, cursor
movement, content changes, etc.) non-visually with sound effects and
speech.

• Design Criteria

1. Support tightly-coupled collaboration

2. Minimize the cognitive load on blind and visually impaired
developers

3. Maintain the agency of blind and visually impaired developers

4. Reduce the burden on blind and visually impaired developers of
driving the collaboration

64

Cursor tethering keeps cursors in sync in Follow Mode

import os

import requests

print("Hello World!")

print("Sync cursors")

1

2

3

4

5

6

7

Mauli

1

2

3

4

5

6

7

import os

import requests

print("Hello World!")

print("Sync cursors")

Follower's IDE Driver's IDE

Cursor tethering keeps cursors in sync in Follow Mode

import os

import requests

print("Hello World!")

print("Sync cursors")

1

2

3

4

5

6

7

Mauli

1

2

3

4

5

6

7

import os

import requests

print("Hello World!")

print("Sync cursors")

Follower's IDE Driver's IDE

Cursor tethering keeps cursors in sync in Follow Mode

import os

import requests

print("Hello World!")

print("Sync cursors")

1

2

3

4

5

6

7

Mauli

1

2

3

4

5

6

7

import os

import requests

print("Hello World!")

print("Sync cursors")

Follower's IDE Driver's IDE

68

Sound effects and speech

import os

import requests

print("Hello World!")

print("Sync cursors")

1

2

3

4

5

6

7

Mauli

Driver goes from line
1 to line 3 using
arrows keys

69

Sound effects and speech

import os

import requests

print("Hello World!")

print("Sync cursors")

1

2

3

4

5

6

7

Mauli
Keyboard Sound

Follower's IDE

70

Sound effects and speech

import os

import requests

print("Hello World!")

print("Sync cursors")

1

2

3

4

5

6

7

Mauli

Keyboard Sound

Keyboard Sound

Bend Sound

"Line 3"

Follower's IDE

71

Edit awareness

import os

#comme

import requests

print("Hello World!")

print("Welcome!")

1

2

3

4

5

6

7

Leader Typing Sounds
(Follow Mode On)

Typing Sounds + Speech Announcement
(Follow Mode Off)

73

Evaluation

• We ran a within-subjects experiment with two conditions (Live Share and
CodeWalk)

• Tasks included paired code editing, refactoring, and bug fixing

• Mauli Pandey served as a sighted confederate for each blind or visually
impaired participant developer

• Likert scale questionnaire after each condition

• Informal follow-up interview to understand participants' experience and to
gather feedback

Results

• Codewalk significantly reduced
the number of sync attempts
during collaboration

• Codewalk improved shared
awareness between collaborators

74

Results

Participants referred to
code locations in many
different ways.

Abstract referents were
spoken more often with
CodeWalk.

75

76

Perception of Collaboration Experience
(all better in CodeWalk condition, except S9, S12)

S1 I was keenly aware of everything in my environment.

S2 I was conscious of what is going on around me.

S3 I was aware of what my teammate did and how it happened.

S4 I was aware that my teammate is aware of my actions.

S5 I am aware of how well we performed together in the team.

S6 I felt like my teammate and I were on the same page most of the time

S7 I could tell what my teammate was thinking about/looking at/talking about most of the time.

S8 I felt like we shared common subgoals as we worked on the task.

S9 My teammate communicated clearly during the task.

S10 I communicated clearly with my teammate during this task.

S11 It was fun to work with my teammate on this task.

S12 My teammate worked effectively with me to accomplish the task.

“

P A R T I C I P A N T 4

So, the difference [between CodeWalk and Live Share]
I think was just more [...] a sense of not being lost and
a sense of not worrying that I’m not following you...
Because I could just snap to wherever you were, I
wasn’t worried about wandering off [...] It was just kind
of more comfortable in a sense of awareness.

Results

77

	Slide 1: Accessible Software Development
	Slide 2: Administrivia
	Slide 3: Accessible Software Engineering
	Slide 4: Accessible Software Engineering
	Slide 5: Deep Dive
	Slide 6: Programming by Voice - Motivation
	Slide 7: Programming by Voice
	Slide 8: Challenges
	Slide 9: Talk Outline
	Slide 10: Programming by Voice
	Slide 11: Current Tools are Awkward!
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Programming by Voice Related Work
	Slide 16: How do Programmers Speak Code?
	Slide 17: How do Programmers Speak Code?
	Slide 18: How do Programmers Speak Code?
	Slide 19: How do Programmers Speak Code?
	Slide 20: A More Natural Way to Code
	Slide 21: Too Many Ambiguities
	Slide 22: Sometimes It’s Non-Obvious
	Slide 23: Design Tradeoffs
	Slide 24: Spoken Java
	Slide 25: SPEED: Speech Editor
	Slide 42: Study – SPEech EDitor Usability
	Slide 43: Watch it in Action!
	Slide 44: Metrics
	Slide 45
	Slide 46
	Slide 47: Summary of Results
	Slide 48: Paper Discussion
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

